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1 Abstract  
Hanauma Bay is a 101-acre bay created by the partial collapse of a volcanic cone and  

once supported a vibrant  coral reef system.  Hanauma Bay is the most popular swimming area in 

the Hawaiian Islands and has been reported to have averaged between 2.8-3.5 million visitors a  

year in the late 1980s and 1990s. In the 2010s, visitors averaged between 3,000-4,000 a day and 

peaked  around 10,000-13,000 per day. Concentrations of oxybenzone  and other common UV  

filters  were measured in subsurface water samples and in sands from the  beach-shower areas  in  

Hanauma Bay. Results demonstrate that beach showers  also  can be  a source of sunscreen 

environmental  contamination.  Hydrodynamic  modeling indicates  that oxybenzone  

contamination within Hanauma Bay’s waters could be retained between 14 and 50 hours from a  

single release event period. Focusing  on only oxybenzone, two different Hazard and Risk 

Assessment analyses were conducted to determine the danger of oxybenzone to Hanauma Bay’s  

coral reef system. Results indicate that oxybenzone contamination poses a significant threat  to 

the wildlife of Hanauma Bay. T o recover Hanauma Bay’s natural resources to a healthy 

condition and to satisfactorily  conserve its coral reef and sea grass habitats, effective tourism  

management policies need to be implemented that mitigate the threat of sunscreen pollution.  

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 Key Words: Hanauma Bay, coral, sunscreen, oxybenzone, risk assessment, hydrodynamic  

modelling   19 

HANAUMA BAY/OXYBENZONE 2 



  
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20

25

30

35

40

Introduction  
Hanauma Bay is a 101-acre bay created by  the  partial collapse of a volcanic cone and once  

supported  a vibrant coral reef system.  In 1967, it was designated as Hawaii’s first  Marine Life  

Conservation District and is located within the  U.S. Hawaiian Islands  Humpback Whale National  

Marine Sanctuary.  It is critical coral reef habitat, as well as habitat for Hawaiian Monk Seals and 

Green Sea Turtles.   Hawaii’s Clean Water Act (Chapter 11-54-3(c)(1) Hawaii Administrative  

Rules)  classifies Hanauma Bay’s water as Class AA waters, which needs to “…remain in their 

natural pristine state as nearly as possible with an absolute minimum of pollution or alteration of 

water quality from any human-caused source or actions.”  

 Hanauma Bay is the most popular swimming area in the Hawaiian Islands  and was  

reported to have averaged between  2.8-3.5 m illion visitors a year in the late 1980s  and 1990s  

(Mak & Moncur, 1995). In t he era of the late 2010s, accurate visitor statistics are  difficult  to 

access, but most sources  report  at least an average  of between  3,000 t o 4,000 visitors a  day and  

peaking around 10,000-13,000 per day. In the era of COVID-19, the bay had be en closed to all  

visitors  from  March, 2020 to December, 2020. Most of these visitors use over-the-counter 

sunscreen products for ultraviolet light (UV)  sun-protection.  As recommend by the  U.S. Food &  

Drug A dministration, these products should be applied to an average  sized,  relatively  bare-torso 

swimmer  in amounts  of about 36 grams every 90 minutes (U.S.  FDA  2019).  This is  

predominantly because swimming and sweat-inducing activities  causes the  discharge  of the  

sunscreen product from the skin into the environment, reducing the  Sun-Protection Factor 

efficacy of the product (U.S.  FDA  1978).  

Sunscreen products predominantly use  UV-filter drugs such as oxybenzone, avobenzone, 

octocrylene, octinoxate, octisalate  and homosalate. The increasing use of sunscreen UV-filter 

drugs  has triggered concern about their emissions  into the environment (Molins-Delgado et al.,  
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2016). As a consequence of their constant use and uninterrupted release, these chemicals are 

classified as pseudo-persistent environmental pollutants, and nowadays constitute one of the 

most important chemical families designated as contaminants of emerging concern by the U.S. 

EPA (Blitz and Norton, 2008; Diaz-Cruz and Barceló, 2015). 

Before 2019, oxybenzone (benzophenone-3; 2-hydroxy-4-methoxphenyl 

phenylmethanone; CAS No. 131-57-7) was one of the dominant UV-filters used in sunscreen 

products. In the U.S. and E.U., oxybenzone concentrations are regulated at 6% in sunscreen and 

cosmetic products (European Union, 2019). In Australia, oxybenzone concentrations have a 

maximum concentration of 10%, while Japan allows for no more than 5% (Australian 

Government, 2013; Japan, 2000). A 2016 investigation into the contamination of Hanauma Bay 

saw water-column oxybenzone concentrations of more than 1,600 ng/L, and avobenzone 

concentrations were above 1,500 ng/L (Booth & Manning, 2017). The amount of daily-

swimming activity, estimated swimmer discharge rates, and the preliminary UV-filter survey 

makes pertinent the dilemma of whether swimmer and beach activity pose a potential threat to 

the sustainability of Hanauma Bay’s coral reef ecosystem and marine mammal and sea turtle 

habitats. 

The danger of UV-filters to wildlife receptors has been known for at least the past 20 

years, starting with the works of Schlumpf, Fent, and others, which demonstrated that UV-filters 

such as oxybenzone can cause endocrine disruption in vertebrate systems and developmental 

toxicity in fish (Schlumpf et al., 2001; Schreurs et al., 2002; Ma et al., 2003, Schlumpf et al., 

2004; Kunz et al., 2006; Kunz & Fent, 2006). A number of studies show that oxybenzone poses a 

realistic hazard by either inducing acute toxicity or acting as an endocrine/developmental 

disruptor to aquatic and marine invertebrates, including sea urchins, bivalves, and arthropods (Li, 

2012; Bošnjak et al., 2013; Ozáez et al., 2014; Paredes et al., 2014; Lopes et al., 2020; 

HANAUMA BAY/OXYBENZONE 4 
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O’Donovan et al., 2020; Thorel et al., 2020). Oxybenzone is also toxic to a wide number of algae 

and plants, including marine phytoplankton and macroalgae (Mao et al., 2017; Zhong et al., 

2019a; Zhong et al., 2019b; Zhong et al., 2020; Teoh et al., 2020). Oxybenzone can be 

detrimental to corals, ranging from mortality, bleaching, and gross planula deformations to 

genotoxicity, endocrine disruption and significant shifts in its metabolome (Donavaro et al., 

2008; Downs et al., 2016; He et al., 2019a; He et al., 2019b; Stien et al., 2020; Wijgerde et al., 

2020). Sunscreen pollution can also impact endangered species, such as sea turtles and marine 

mammals (Alonso et al., 2015; Cocci et al., 2020). Finally, emerging science has demonstrated a 

detrimental interaction between oxybenzone toxicity and climate change factors, such as elevated 

temperatures and ocean acidification (Chaves Lopes et al., 2020; Wijgerde et al., 2020). 

The Hazard Identification is a critical element of the investigative and management 

process in addressing the issue of environmental contamination by sunscreen products. The goal 

of a Hazard Identification is to allow for the construction of a scientifically defensible argument 

regarding exposure of specific wildlife receptors to a discrete contaminant which can cause a 

toxicological/pathological response ((NRC, 1983; U.S. EPA, 1992, 1998, 2004; NRC, 2009; 

European Commission, 2019). Hazard Identification analysis also helps to recognize the specific 

pathologies a chemical contaminant may cause to relevant ecological receptors during a field 

investigation.  For example, are the levels of a sunscreen contaminant (e.g., oxybenzone) in an 

area high enough to induce mortality, genotoxicity, coral bleaching, decreases in photosynthetic 

conditions, or developmental deformities? One of the applications of the results of a Hazard 

Assessment is for Hanauma Bay resource managers to identify and implement effective 

mitigation measures to reduce contamination levels to ensure some level of safety for Hanauma’s 

ecological integrity. 
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In this study, we measured concentrations of oxybenzone, other benzophenone chemical 

species, and a group of benzotriazoles in subsurface water samples that were collected in the 

back reef zone most utilized by swimmers in Hanauma Bay. We measured the levels of 

oxybenzone and other common UV filters in sand samples in the beach-shower area in Hanauma 

Bay, to determine if this could be a second source of sunscreen contamination.  We also 

conducted a preliminary examination of the retention time of oxybenzone (and other sunscreen 

compounds) within Hanauma Bay. Focusing only on oxybenzone, environmental contamination 

data were combined with the ecotoxicological data from the published literature, and then 

applied to a Hazard and a Risk Assessment to determine the danger of oxybenzone to Hanauma 

Bay’s coral reef system. 
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102 Materials and Methods  

Sample Collection  

Seawater samples from Hawaii  were collected using  precleaned one-liter amber  glass bottles  

with Teflon lined lids  (I-Chem, 300 series, VWR). Sample locations are indicated in  Figure 1A. 

Samples  were collected approximately 30 cm below the surface of the water on November 17, 

2017, be tween 16:00 and 17:30 Pacific Standard Time.  

 

Wate sample extraction  

Sample volumes  of 100-200 mL were loaded onto StrataTM-X 33 µm polymeric reversed phase  

C18 cartridges (500 mg/12 mL;Phenomenex)  to extract, purify and concentrate  the target  

analytes by solid phase extraction (SPE). After loading, the cartridges were washed with 3 mL of 

HPLC-grade water and dried under a gentle current of nitrogen. Then, the analytes were  eluted 

with  (a) 7.5 m l  of a solution of ethyl acetate and dichloromethane 1:1 v/v (EtAc:DCM (1:1)) and 

(b) 2 m l of DCM. The extracts were joined and evaporated with nitrogen until near dryness and 

then transferred into a LC-vial prior to full evaporation. Reconstitution was performed with 0.5 

ml of  HPLC-grade  water containing the  isotopically labelled  internal standards. Finally, 20 µl of 

the extracts were  analyzed  by HPLC-MS/MS.  

Water sample  extract analysis by  HPLC-MS/MS  

The determination of the target compounds was accomplished by high performance liquid 

chromatography-tandem mass spectrometry in a  Symbiosis Pico chromatograph from  Spark 

Holland (Emmen, The Netherlands) operated in off-line mode, and coupled to a 4000 Q TRAP™  

mass spectrometer from Applied Biosystems-Sciex (Foster City, CA, USA). The  

chromatographic separation was achieved on a LiChorCART  ®  Purospher®  STAR®  RP-18 EC  
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(125 mm x 2.0 mm, 5 µm) from Merck (Darmstadt, Germany), preceded by a guard column 

LiChorCART® 4-4 Purospher® STAR® RP-18 ec (5 µm). The mobile phase consisted of water 

and acetonitrile (ACN) both HPLC grade with a 0.1% formic acid. The chromatographic 

gradient was as follows: the initial conditions of 5% ACN, increasing to 75% in 7 minutes, and 

to 100% in the next 3 minutes. Pure organic conditions were kept constant for five minutes and 

in the next two minutes until initial conditions were reached. The analytes were determined using 

electrospray ionization (ESI+) under positive mode and selected reaction monitoring (SRM) 

mode for improved sensitivity and selectivity. Two transitions per compound were registered, the 

more intense for quantification and the second one for confirmation. 

Quality control/quality assurance for LC-MS analysis of water samples 

Quantification was conducted through internal-standard calibration using isotopically labelled 

standards (Supplemental Table 1). The total run time for each sample was 23 minutes. The 

method performance is shown in (Supplemental Table 2). 

Sand sample extraction analysis by HPLC-MS/MS 

Benzophenone (BP, CAS# 119-61-9), Tinosorb M (methylene bis-benzotriazolyl 

tetramethylbutylphenol; CAS# 103597-45-1), and oxybenzone (CAS# 131-57-7) were purchased 

from Sigma-Aldrich (Lyon, France), while Tinosorb S (bis-ethylhexyloxyphenol methoxyphenyl 

triazine; CAS# 187393-00-6), avobenzone (butyl methoxydibenzoylmethane; CAS# 70356-09-

1), homosalate (CAS# 118-56-9), octisalate (ethylhexyl salicylate; CAS# 118-60-5) and 

octocrylene (CAS# 6197-30-4) were kindly provided by Pierre Fabre Laboratories. Butyloctyl 

HANAUMA BAY/OXYBENZONE 8 
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salicylate (CAS# 190085-41-7)) was obtained from Innospec Active Chemicals. Octinoxate 

(ethylhexyl methoxycinnamate; CAS# 5466-77-3) was obtained from Accustandard (Cat# 

ALR144N). 

Initial analysis of samples from beach sites 1, 2, and 3 exhibited extremely high 

concentrations of several of the UV filter analytes that were above the highest concentration 

calibrant (Figure 1B). For beach samples sites #1, #2, and #3, 0.2 grams of sand were used for 

extraction. For beach sand sample #4, two grams of sand was used. For each sand sample, 7 

replicates were extracted and analyzed. In all cases, sands were not dried before being added into 

the extraction tubes. If need be, excess water was removed by spreading the sand on a filter 

paper. Sands were extracted with MeOH (2 mL) and the concentration of UV filters in the 

supernatant was measured by direct injection in UHPLC-HRMS following the protocol 

previously described (Rodrigues et al., 2021). The concentration in the supernatant was 

calculated by comparison of peak areas with those from an external calibration curve. After 

analysis, the solvent and the sand water were removed by evaporation with a GeneVac HT-4X. 

The exact mass of dry sand gave the initial mass of water in the sand and the total volume of 

supernatant (2-mL MeOH + sand water), allowing for correction of the concentrations in 

supernatant and in sand. 

Quality Control/Quality Assurance for LC-MS analysis of water samples 

The limits of detection (LOD) and quantitation (LOQ) are provided in Supplemental 

Table 3. The recovery rates were calculated from spiked sand samples, which were extracted 

with MeOH using the same protocol as for extraction of natural sand samples (Rodrigues et al., 

2021). The recovery rates were 85 % for homosalate, 88 % for benzophenone and 100 % for 

HANAUMA BAY/OXYBENZONE 9 
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Tinosorb M, avobenzone, oxybenzone, butyloctyl salicylate, octinoxate, octisalate, Tinosorb S, 

and octocrylene (Supplemental Table 3). 

Pollution retention modeling 

Both the particle pathway and retention will affect how released pollutants influence local water 

quality and ecosystem health (Du et al., 2019). A 2DH hydrodynamic and particle tracking 

model was implemented to estimate the mixing and dispersion of sunscreen in the water of 

Hanauma Bay (Tsanis et al., 2007; Jiang et al., 2017). The model developed for this study solves 

the Navier-Stokes equations for shallow water with the hydrostatic pressure assumption. The 

computational grid is shown in Supplemental Figure 1. An ocean model should provide a 

realistic large-scale circulation while also resolving small-scale flow features down to the scale 

of individual reefs. Unstructured-mesh ocean-models offer a potential solution to this resolution 

issue by locally increasing the model resolution close to reefs and islands (Lambrechts et al., 

2008; Thomas et al., 2014, 2015). Bathymetry data were acquired from U.S. NOAA's National 

Centers for Environmental Information (NCEI, https://www.ncei.noaa.gov/). For deeper areas, 

we used the General Bathymetric Chart of the Oceans database (https://www.gebco.net/). The 

sunscreen contaminant release data used in the model were from water sample sites #1, #4, #6, 

#8, and #10 (Figure 1A). 

The dispersion model was run for an arbitrary one-month period in 2018, including 

periods of tide-dominant and oceanic-current-dominant conditions. During periods of oceanic-

current domination, a strong shoreward tendency can be observed in current behavior for this 

area. To illustrate this, three hydrodynamic models were run to determine oxybenzone retention 

within Hanauma Bay to tidal forcing (Model scenario #1), a combination of tidal and 

(southward) oceanic current forcing (adopted from global HYCOM data) (Model scenario #2), 

HANAUMA BAY/OXYBENZONE 10 
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and a combination of tidal and (southward) oceanic current forcing (adopted from global 

HYCOM data), but during periods of relatively strong shoreward (northward) current presence 

(Model scenario #3). 

Hazard and Risk Methods 

For a hazard assessment, there are a number of diverse approaches in calculating a hazard (or 

risk) quotient (Environment Canada 2013; European Commission 2003; European Medicines 

Agency 2006; Dussault et al. 2008; Hernando et al. 2006; USEPA 2004, 2020). In this paper, we 

compare two different hazard/risk-quotient assessment methods to determine the threat to 

wildlife integrity for Hanauma Bay. 

The definition of a hazard or risk quotient is “the ratio of the potential exposure to a 

substance and the level at which no adverse effects are expected” (U.S. EPA, 2018).  Hazard 

quotient equations require at least two parameters: (a) measured environmental concentration 

(MEC) and (b) a toxicity endpoint (e.g., No observed effect concentration, lethal concentration 

for 50% of the population (LC50)). Measured environmental concentrations used for these 

calculations are found in Figure 1A. 

The first method employed a Hazard Quotient (HQ) calculation following a protocol 

specified by the U.S. Environmental Protection Agency (U.S. EPA) guidance for pesticides and 

other chemicals (U.S. EPA, 2004). This guidance also makes provisions for determination of 

effects for Endangered and Threatened species (U.S. EPA, 2004). This method compares the 

MEC to an acute toxicity endpoint (e.g., LC50 is the concentration of a chemical where 50% of 

the organisms die) or EC50 concentration of a chemical (adverse effect observed in 50% of the 

population for a sub-lethal endpoint). Toxicity reference values were obtained from the 

HANAUMA BAY/OXYBENZONE 11 
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published literature (Table 2). Thus, a HQ is a screening tool that generates measures of levels of 

concern, though this method does not provide probability-based information of risk 

(Tannenbaum et al., 2003). 

The equation for the acute hazard quotient is HQ = (MEC)/ (organism’s EC50 or LC50 

with 96-hours or less of exposure to the toxicant). An Affect Factor or Uncertainty Factor were 

not included in this equation. This quotient was derived for each of the 10 samples and compared 

to U.S. EPA’s Level of Concern of 0.5 for aquatic animals (U.S.EPA, 2004; Gwinn et al., 2020), 

which were highlighted in red (Table 2). 

A second method was used to calculate risk quotients that was based on the European 

Commission guidance regarding risk quotient (RQ) determination. The European Commission 

methodology has been adopted in the development of several ecological risk assessment 

guidelines (ECHA 2008; European Commission 1996, 2003; Environment Canada 2013; 

European medicines Agency 2006; Dussault et al., 2008; Hernando et al., 2006).  With this 

method, the actual or predicted environmental concentration (MEC) is compared to a derived 

known or Predicted No-Effect Concentration (PNEC) which is derived by dividing the LC50, 

EC50, or NOEC by an uncertainty (or assessment) factor (UF). Thus, the RQ = 

(MEC)/(PNEC)(UF). For this RQ determination, an UF of 1000 was selected for the 

extrapolation of the EC50, LC50 or No Observable Effect Concentration (NOEC) values to 

estimate no-effect values (PNEC) (Chapman et al., 2009; Dussault et al., 2008; Means et al., 

1993; Environment Canada, 2013). In cases where the NOEC was not known, but the Lowest 

Observable Effect Concentration (LOEC) was known, the LOEC was divided by two to calculate 

a predicted NOEC (ECHA, 2008).  Toxicity reference values were obtained from the published 

literature (Table 3). 
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A number of endpoints not commonly used as regulatory toxicological endpoints are 

included in Table 3. However, all of these toxicity endpoints can be argued to reflect aspects 

necessary for population-level survival and reproductive fitness in real world situations 

(Goulson, 2013; Moore et al., 2004; Ruel and Ayres, 1999; Schafer et al., 1994). 

The criteria for Levels of Concern for organisms in ecosystems for interpreting the RQ is 

based on a four-tier ranking system (European Commission 1996; Sanchez-Bayo et al. 2002; 

Hernando et al. 2006). Based on the American National Standards Institute recommendations for 

Hazard Communications, a color scheme is used for ease of visualization of the Levels of 

Concern for this methodology (Table 3). Red boxes indicate RQ values greater than 1, 

indicating an unacceptable risk requiring immediate action, and is the standard criteria for the 

Level of Concern within the European Commission framework. Orange boxes represent values 

between 0.5 and 1.0; a moderate concern of an acute impact. Yellow boxes represent values 

between 0.1 and 0.49, indicating a lower risk of impact. White boxes indicate no concern of 

danger. 
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253 Results  
Measured Environmental Levels  

Oxybenzone was measured from  water column samples at each of 10 sampling l ocations  

within Hanauma Bay. Concentrations ranged from 136-27,880 ng/L as depicted in Figure 1A  

(nanograms per  liter is equivalent to parts per trillion). Other benzophenones or benzotriazoles  

(UV blockers) also were measured in the bay. Benzophenone-1 was detected  at a  concentration  

of 21.94 ng/L from  Site 9. Benzotriazole was detect in waters from Site 7 (16.48 ng/L), Site 8 

(18.6 ng/L) and Site 9 (18.78 ng/L).  

Beach sand collected  from four beach-shower sites (Figure 1B) was analyzed for the  

presence of 10 UV filters (Table  1). Nine  UV filters were detectable at  each site, although  

several were below the limit of quantitation, depending on the site. Butyloctyl  salicylate was not  

detected at any of the sites. The highest concentrations were found at Site 1 and the lowest at Site  

4 with only four of the  UV filters within quantitation limits. Octisalate was the highest  measured 

UV filter among  Sites 1-3, followed by homosalate. The concentrations  of UV filters in Table  1  

are shown as uncorrected for recovery rates.  

Sunscreen retention time  in Hanauma Bay  

Modelling scenarios  for the retention time of sunscreen contaminants  in  Hanauma Bay 

are:  

•  Model  scenario #1, Tidal Forcing  = ~50 hours (Figure 2)  

•  Model  scenario #2,  Tidal and Oceanic (southward) Current Forcing  = ~14 hours (Figure 3)  

•  Model  scenario #3: Tidal and Shoreward Oceanic Current Forcing  = ~  41 hours (Figure 4)  

254 
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Under normal conditions, when currents run to the south, contamination is flushed out of 

the Bay quickly - within 24 hrs. When currents run to the north (about 30% of the time), 

retention is much longer, assuming that there is no further interference from increasing number 

of bathers. 

Hazard/Risk Analysis 

Hazard and risk quotients are meant as a proactive means to determine if a chemical contaminant 

in a system is at a concentration that may pose a threat to a specific species population at that 

locality, or to the ecological integrity in that locality (U.S.EPA, 2004; Gwinn et al., 2020). It is 

also used to help define whether a system is polluted by a chemical; pollution being defined as 

causing or potentially causing a harmful effect (Connell & Miller, 1984).  Calculated HQs for an 

acute exposure for each species and toxicity reference value are shown in Table 2. Based on the 

guidance by U.S. EPA (U.S.EPA, 2004; Gwinn et al., 2020), the most sensitive receptor 

represented in this dataset is Pocillopora damicornis coral cells exposed to oxybenzone during a 

4 hour exposure involving light (LC50 = 8.0 µg/L) (Table 2). Based on the coral in vitro data, 

Sites 4 and 9 exhibited high risk to an acute exposure (Table 2). Based on the toxicity reference 

value for Stylophora pistillata planula exposed for 24 h with a day/night circadian cycle, Site 4 

exhibited a high risk to acute exposure to oxybenzone at the measured concentration. 

The RQ calculated using the European Commission (1996, 2003) method is argued to be 

a more rigorous and realistic estimation for risks than the U.S. EPA method for identifying 

threats to ecological integrity (Crane and Giddings, 2004). 

Comparing coral cells exposed to oxybenzone in the light, the most threatened of the 

species was P. damicornis, while the relatively least-at-risk was Porites astreoides, and then 

HANAUMA BAY/OXYBENZONE 15 



  
  

 

      

   

       

    

  

       

  

     

  

   

   

  

  

  

   

   

   

   

  

    

 

  

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

Orbicella annularis (Table 3). This is consistent with the predicted Species Sensitivity 

distribution that branching morphologies are less stress tolerant than the “boulder” morphologies 

(Downs et al., 2016). Calculated risk quotients indicate acute risk for all sites (Table 3). Based 

on these data (Figure 1A), Sites 4 and 9 exhibited severe acute danger, while sites 3, 5, 7, 8 and 

10 exhibited unacceptable danger for endangered animals and sites 3, 5, and 10 exhibited 

increased risk for toxicity for non-endangered organisms. It should be noted that P. damicornis is 

a species that should be found in abundance in the near-shore fringing reef area of Hanauma 

Bay.  Impromptu and formal surveys looking for P. damicornis indicate that this species may be 

extinct within Hanauma Bay. 

For coral and jellyfish planula, all the sites with the exception of Site 6 posed a serious 

risk to planula viability based on the majority of the endpoints (Table 3). Planula deformity 

LC50s and EC50s (8 hrs dark or 8 hrs light) showed the least risk across most sites. For coral 

planula, DNA damage, zooxanthellae loss or damage (bleaching) precedes planula deformation – 

coral experienced significant shifts in these biomarkers at the 8 hour of exposure mark when 

compared to coral deformity. Coral morphological deformation occurs later in the pathological 

timeline, and the risk assessment reflects this.  Furthermore, it can be argued that these cellular 

pathologies may predict the occurrence of the gross-morphological planula deformity (Moore et 

al., 2004). 

For non-cnidarian invertebrate species, risks were less pronounced though Sites 4 and 9 

again contained concentrations of oxybenzone that posed the highest risks (Table 3). Sites 1,2, 

and particularly 6 showed the least risk of adverse effects from oxybenzone exposure, although 

all sites including these three exhibited some level of risk based on one or more endpoints. 
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Sites 4 and 9 posed the most threatening concentrations to every species of microalgae, as 

well as for all of the biomarker parameters (Table 3). Seagrass beds should populate sandy 

patches in the center and mouth of the bay, though they have been conspicuously absent or 

denuded for at least the past 20 years. There are no ecotoxicological studies for marine vascular 

plants, the closest surrogate for a vascular plant is cucumber (Cucumis sativus). Except for Site 

6, all the sites posed a threat to photosynthetic and mitochondrial function, which can have an 

impact to above ground productivity and reproductive effort (Table 3). The toxicological 

sensitivity of microalgae to oxybenzone, and the risk condition for Hanauma Bay, calls into 

question the potential effects on the phytoplankton community structure. 

Due to the relatively high sensitivity of fish toxicological parameters to oxybenzone, fish 

exhibited some of the highest levels of concern across most of the sampled area within Hanauma 

Bay (Table 3). Brachydanio rerio (96 hr LC50) and Danio rerio (96 hr embryo LC50) were the 

least at risk across the various sites. Markers for DNA damage were calculated to have 

enormously high-risk quotient values (e.g., Poecilia reticulata, Table 3). 
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334 Discussion  
The over-arching question is  whether sunscreen contamination poses a threat to the coral  

reef and seagrass  ecosystems  within Hanauma Bay, and whether a nthropogenic activities  such as 

sunbathing, swimming and snorkeling  should be seen as a source of pollution.  The second 

question we pose is  whether beach showers can be a potential source of sunscreen 

contamination, since  the waste waters are not collected by  a municipal  sewage system  (untreated 

waste), but runs  freely back into the bay.  The third question we pose is, what is the  potential  

retention time of a single day of contamination within Hanauma Bay?  Recognition of sunscreen 

pollution means that resource managers and policy makers can confidently consider this a  

putative threat and consider options for mitigation. To begin to address the concern by managers  

of this “sunscreen sheen,” it must first be determined if the composition in its entirety, or as  

individual components  of a sunscreen mixture, pose a hazard to Hanauma’s ecological  integrity. 

One such probable singular chemical component of sunscreen pollution is oxybenzone.  

Oxybenzone was detected in 100% of the  water samples within  Hanauma  Bay.  

Concentration ranges were considerable, and were most likely a result of eddy formations  

between the reef and the shoreline, as well as tidal forcing.   

This is the first study to demonstrate that beach showers near reefs  may be  a significant  

source of sunscreen chemical contamination into the environment. Sunscreen residue that is not  

released by swimmers during swimming can still contaminate Hanauma Bay via shower and 

rainfall run-off. Under the U.S. Clean Water Act, beach showers that are not connected to a  

municipal waste-water system can be classified as a  “point source” of pollution for not  just  

navigable waters, but  for both State and U.S. federally protected waters (U.S. Clean Water Act, 

2019).  
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Hawaii experiences a monsoonal-like climate, exhibiting a dry season and a wet season. 

During the dry season, sunscreen contaminants may accumulate to high concentrations in the 

sand within the shower plumes.  The first rains of the rainy season may result in a high 

concentration pulse of sunscreen contaminants entering the receiving waters of Hanauma Bay.  

This pulse may pose an extreme and lethal hazard to the wildlife within Hanauma Bay. The dry 

season (May – August) sees less than 0.5 cm of precipitation per month within Hanauma. 

September is the beginning of the rainy season; November can see more than 1.25 cm of rain. 

This suggests that the highest concentrations of sunscreen contamination may occur in 

September, which is also the warmest time of the year and where coral bleaching events become 

observable.  The period of sampling in November may exhibit the lowest level of sunscreen 

contamination, both as a condition of lower tourism intensity and increased flushing from peak 

precipitation. 

Understanding the retention time of a pollutant allows for rigorous design and assessment 

of mitigation policies.  Bay closures are becoming a resource management tool to relieve tourism 

pressures on targeted natural resources (County of Hawai'i, 2020; Koh and Fakfare, 2020; 

County of Hawai'i, 2021; Fox, 2021).  How long should a bay be closed to ensure rapid 

dissipation of the pollution so as not to exceed hazard action levels? How many days should a 

bay be opened per week, and under what schedule that it may ensure a pollutant build-up does 

not occur (e.g., open for one day, then closed the next two days)? Or should bays under high 

retention rates only be opened when oceanic flushing exceeds a minimal level of water 

exchange? Design and creation of marine protected areas might also require this information; 

reefs in bodies of water that have high retention rates may need more protection than more 

coastally exposed reefs. Finally, environmental impact assessments/statement regarding 
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residential and resort development need to consider the impact of increased visitor density from 

their businesses on the bay that are adjacent to their properties (U.S. EPA, 2011; Gross, 2018). 

Coastal modeling of pollutants may also be necessary to determine other reef 

communities that are under risk of exposure. After exiting Hanauma Bay, dispersion of the 

pollutants was directly influenced by shelf circulation, ocean currents, and the interaction 

between the shallow shelf and deep ocean (Du et al., 2019). In addition, mesoscale eddies in the 

ocean can be influential in altering the water exchange between ocean and shelf as they move 

and dissipate. Could hydrophobic sunscreen pollutants be re-introduced into Hanauma Bay from 

these mesoscale behaviors? This complex situation needs more attention, as well as more 

comprehensive and sophisticated modeling and measurement attempts, along with a detailed 

understanding of oceanic current components in the area, which can be achieved from a data 

analysis of available global modelling over a longer period of time. 

In this study, we compared the two major methodological approaches to risk assessment 

for contaminant data of oxybenzone collected in Hanauma Bay, Hawaii. The U.S. EPA Hazard 

quotient method is analogous to describing a chemical weapon detonation in a given area where 

it rapidly kills 50% of the population in the dispersion zone within a very short amount of time 

(e.g., 48-96 hours).  It is the most simplistic of the deterministic models, and it inherently does 

not tell you about the consequence of the population that survives after an acute exposure, how 

long that population would survive after the initial exposure, its long-term impacts on the health 

of the acute-exposed population, or the impact of the exposure event when exposed to low 

concentrations to the toxicant (Somani & Romano, 2000; Volans & Karalliedde, 2002). The U.S. 

EPA method also says nothing about the threat of persistent, daily exposures to the toxicant at 

lower concentrations.  Nor does it accommodate more recent social and scientific concerns of 

relying solely on animal-sacrifice toxicological models.  But given these limitations, this hazard 
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assessment model demonstrated that some areas within Hanauma Bay, especially site 4, posed a 

serious threat to coral short-term survivability. 

Site 4 of Hanauma Bay exhibited the greatest threat estimation (Table 2) using the US 

EPA method. It was the only site for coral planula, when exposed in the light, to have a hazard 

quotient value above 0.5.  For the microalgae, Isochrysis galbana, the hazard quotient value was 

above 2, which is consistent with the fact the oxybenzone is particularly noxious to 

photosynthetic organisms.  Oxybenzone is especially toxic to the electron transport chain of 

photosynthesis and oxidative phosphorylation in algae and plants, resulting in a reduction of 

growth and biomass (Mao et al., 2017; Zhang et al., 2019a; Zhang et al., 2019b).  These high 

concentrations of oxybenzone and its effect on photosynthetic integrity may explain why there is 

an increased sensitivity of heat stress to induce coral bleaching.  Oxybenzone can induce a 

bleaching pathology, and increase a coral’s sensitivity to temperature stress, resulting in a 

bleaching response below the common bleaching temperature of two weeks at 30.3ºC (Downs et 

al., 2009; Downs et al., 2013; Downs et al., 2016; Wijgerde et al. 2020). Bleaching was observed 

in Hanauma Bay in 2015, even though temperatures never exceeded 29.8°C (Rodger et al., 2017; 

https://www.coralreefwatch.noaa.gov/). Bleaching was observed on reefs immediately adjacent 

to tourism-dense coastlines in 2019, but were relatively absent in more remote reefs or lightly 

visited reefs. These observations are consistent with the findings of Wijgerde et al. (2020) that 

oxybenzone exposure coupled with elevated temperatures increases the risk of coral to bleaching 

pathologies. 

The model adopted by the European Commission is seen as the more relevant and 

accurate model that may explain the current condition of a geographic habitat that is 

contaminated with a personal care product chemical or pharmaceutical (Blasco et al., 2020). It 

uses uncertainty or assessment factors to calculate a more realistic account of a receptor’s 
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toxicological sensitivities at different stages of its life history.  Like the U.S. EPA method, it is 

limited by the temporal nature of the effect concentration data (e.g., 8 or 48 hours vs. 10 days), 

and thus can only calculate a risk assessment for the temporal time frame associated with the 

effect concentration data.  Nonetheless, it provides a more relevant determination for the 

“danger” threshold of a contaminated site. 

For Stylophora coral, all the sites had a risk quotient above 1, except Site 6, indicating 

that coral planulae are explicitly threatened with deformation (Table 3).  For both deformity and 

mortality, light was an exacerbating factor that increased the threat of oxybenzone.  This is 

consistent with oxybenzone and other benzophenone species acting as a photo-toxicant across a 

range of species (Downs et al., 2014; Downs et al., 2016; Zhang et al., 2021). Sites 4 and 9 

exhibited risk quotient vales above 1 for all the species included in this assessment. 

U.S. and European Union government regulatory agencies are advocating for the 

discontinuation of whole organism toxicity testing and shifting to New Approach Methods that 

utilize in vitro cell-toxicity testing for chemicals (Gwinn et al., 2020). Coral cells have been used 

to ascertain the toxicity of chemicals for over 10 years (Downs et al., 2010; Roger et al., 2021). 

Coral husbandry for ecotoxicological work is technically challenging and resource intensive.  

Coral cell toxicity testing shows remarkably similar exposure-concentration/response behavior as 

the intact colonial coral fragment (Downs et al., 2016). This is reflected in the pattern of risk 

quotients exhibited among the 10 sites between Stylophora coral cells in the light and dark 

versus Stylophora planula in the light and the dark (Table 3). Pocillopora damicornis is 

supposed to be an endemic species in Hanauma Bay, but is now possibly extinct (Dave Gulko, 

Hawaii Dept. Land & Natural Resources, personal communication).  It is a much more stress-

sensitive species compared to more massive-morphological coral species.  The risk quotient for 
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Pocillopora was above one for all 10 sites, indicating that it would be unlikely to survive for 

long in this type of daily polluted environment. 

Coral reef natural resources are under threat from intensive tourism.  The most famous 

example is Maya Bay, Thailand.  In 2018, Maya Bay saw more than 2.6 million visitors.  The 

progression of ecological decay over the past 15 years was becoming impossible to disregard.  In 

response, the Thai authorities shutdown Maya Bay for an indefinite amount of time to allow the 

habitats in Maya Bay to naturally recover, and to devise and implement a tourism management 

plan that would allow the sustainable interaction between tourists and biodiverse and ecological 

conservation (Koh and Fakfare, 2020). After six months without tourism, the recovery of wildlife 

was astonishingly observed (Dr. Thron Thamrongnawasawat, personal communication). 

Hanauma Bay’s waters are renowned for being grayishly turbid even on doldrum days, 

and swimmers exiting the water complain that they smell like a hodgepodge of “sunscreen 

fragrances.” During the COVID-19 lockdown in 2020, no tourists or recreational visitors were 

allowed within Hanauma Bay for nine months (Caldwell, 2020). Reports indicate that water 

clarified to a point where the water returned to having a blue hue, and a significant increase in 

fish and invertebrate abundance were observed (Cruz, 2020). This expulsion of biodiversity 

during the tourism-visitation period of the past 30 years may be directly tied to sunscreen 

pollution within the bay. A recent study demonstrated that commercial sunscreens not only 

induced lethality at high concentrations in shrimp, but lower concentrations repelled the 

organism from the contaminated area, resulting in a population immediate decline phenomenon 

(Araujo et al., 2020). Maintenance of biodiversity and ecological community demographics may 

require banning all sunscreen products in the area until proven that the products do not result in 

repellence. 
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The focus of this study was on oxybenzone, but the presence of other sunscreen 

contaminants should be noted.  The water analysis method focused almost exclusively on 

oxybenzone, but other contaminants were also observed, including benzophenone-1 (a 

metabolite of oxybenzone, and a cosmetic ingredient) and benzotriazole.  Both compounds are 

renowned endocrine disruptors. Benzophenone-1 is much more toxic than the parent compound; 

it is 200-fold more estrogenic than oxybenzone (Gago-Ferrero et al., 2012). Regarding 

benzotriazoles’ ecotoxicity, evidence indicates that these chemicals have endocrine disrupting 

properties, induces oxidative stress, hepatotoxicity and neurotoxicity in both freshwater and 

marine fish (Tangtian et al., 2012; Liang et al. 2014; Liang et al. 2016; Liang et al. 2017). 

The survey of sunscreens in beach sand was based on a validated methodology that 

attains more than 85% recovery of each of the surveyed analytes, meaning that these 

concentrations are accurate, and that further studies should be conducted that focus on the 

distribution and impact of sunscreen compounds, not only avobenzone, octocrylene, octinoxate, 

octisalate and homosalate, but also other sunscreen ingredients such as parabens and 

phenoxyethanol.  All of these UV filter compounds, including the carcinogen benzophenone, 

impart some level of endocrine disruption to animals, and begs the question of the endocrine 

disrupting potential of Hanauma Bay receiving waters, and how they may be impacting the 

Hanauma Bay’s proximate habitats and endangered species. By logical progression, a pertinent 

question is whether the sullied waters of Hanauma Bay during intensive tourism periods poses a 

threat to public health, especially to pregnant persons and children (DiNardo and Downs 2019a; 

DiNardo and Downs 2019b). 
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The hydrodynamic models and modeling data are available from Prof. Haghshenas, 

Institute of Geophysics, University of Tehran (email: sahaghshenas@ut.ac.ir). LC-MS 

chromatograms for the water analysis can be obtained from Dr. Silvia Diaz Cruz, Spanish 

Research Council (email:sdcqam@cid.csic.ed). LC-MS chromatograms for the beach sand 

samples can be obtained from Dr. Didier Stien, Centre National de la Recherche Scientifique 

(email: didier.stien@cnrs.fr). Calculations for the U.S. EPA hazard quotients and E.U. risk 

quotients can be obtained from Dr. Cheryl Woodley, U.S. National Oceanic and Atmospheric 

Administration (email: cheryl.woodley@noaa.gov). 
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Figure 1.  Panel A  - Sampling  locations  and oxybenzone concentration w ithin Hanauma Bay, 

Oahu, State of Hawaii, U.S.A. Water samples  were collected approximately 30 cm below the  

water surface.  Panel B  - Beach sand sampling l ocations within the run-off plume  of the  two  

beach showers  in Hanauma Bay, City of Honolulu, State of  Hawaii, U.S.A.  Sand samples 

(indicated by numbers in red squares) consisted of collecting the top 5 cm of surface sand within 

a ~10 cm x 10 cm sampling s quare  and were collected on January 27, 2020. N umbers  

designating sample sites are the same designations in Table  1. Arrows indicate observable  

rivulets from shower run-off.  

Figure 2.  Model results for Scenario #1 (assuming the presence of pure  tidal currents) – t he  

concentration releases at a unit rate  at five locations inside the bay during the period of 9 am to 4 

pm on November 10th, 2018, and the concentration distribution is shown after (A) 3 h, (B) 9 h, 

(C)15 h, (D) 21 h, (E) 27 h, (F) 33 h, (G) 39 h, (H) 45 h, (I) 51 h, (J) 57 h and (K) 63 h. The  

retention time is the longest under these conditions.  

Figure 3. M odel results for Scenario #2 (in the presence of southward oceanic currents) – t he  

concentration releases at a unit rate  at five locations inside the bay during the period of 9 am to 4 

pm on November 5th, 2018, and the concentration distribution is shown after (A) 3 h, (B) 9 h 

and (C) 14 h. Most of the contamination is  gone in less than a day.  

Figure 4. M odel results for Scenario #3 (in the presence of northward oceanic currents) – t he  

concentration releases at a unit rate  at five locations inside the bay during the period of 9 am to 4 

pm on November 7th, 2018, and the concentration distribution is shown after (A)  3 h, (B) 9 h, 

(C) 15 h, (D) 21 h, (E) 27 h, (F) 33 h, (G) 39 h, and (H) 41 h. The retention time  is  much longer 
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under these conditions. 
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Table 1. Concentration of UV filters in sand samples expressed in micrograms of UV filter per 

gram of sand. BS = butyloctyl salicylate < LOQ = Below limit of quantitation, but detectable. 

<LOD = Below limit of detection. 

Table 2. Hazard quotient for Acute Toxicity in Hanauma Bay, Oahu, Hawaii using US EPA 

method. Color chart: Red = Severe condition for a potential toxic effect, ≥ 0.5; Yellow – 

Moderate threat condition for a potential toxic effect, 0.1-0.5; Green = Low risk of acute toxicity, 

0.05- 0; Gold = ≥ 0.05 Acute Risk for endangered animal species 

Table 3. Risk Quotient for Acute Toxicity in Hanauma Bay, Oahu Hawaii using European Union 

method for Cnidarian species, invertebrate (non-Cnidarian) species, plant and algae species, and 

fish species. Color chart: RED= Severe condition for a potential toxic effect ≥1; Yellow= 

Moderate threat condition for a potential toxic effect = 0.5 to 1.0; Green= Condition of concern 

0.5 to 0.1. 
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Supplemental Table 1. Name, acronym and CAS Number of the organic UV filters and UV 

stabilizers investigated in the water extracts. Internal standards used for quantification were also 

included. 

Supplemental Table 2. Performance of the HPLC-(ESI+)-MS/MS method applied. 

Supplemental Table 3. Instrumental limit of detection in solution; limits of quantitation in 

solution and in sand samples. BS = butyloctyl salicylate. LOD = Limit of detection. LOQ = 

Limit of quantitation. 

Supplemental Figure 1. The unstructured computational grid developed for the dispersion 

model. 
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